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Abstract 

We study a canonical desingularization process for oriented reduced graphs. We use it to 
give an arithmetical characterization for these graphs by means of sequences of natural num- 
bers, based on the representation of a partial ordering by its maximal chains. For such graphs 
we define, in analogy with Algebraic Geometry, similar tools and language as in birational 
geometry. We study a class of birationally equivalent graphs giving it a graph structure and 
describing, in an explicit way, a canonical graph in the class with a minimal number of points. 
(~) 1998 Elsevier Science B.V. 
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O. Introduction 

In this paper we are interested in the class o f  reduced graphs, representing antisym- 

metric transitive digraphs with no loops nor multiple arcs. It is well known [1] that 

every digraph (X, G) o f  this class also represents a partial ordering (X, <_) where x < y 

if  and only if (x, y )  E G. Both structures can also be seen as a T0-topological space over 
X (x is adherent to {y} if  and only if x _< y )  for which the family {{£} Ix C X} is 
a subbase of  closed sets. The morphisms between partial orderings are the continuous 

maps between the correspondent topological spaces. 
Our initial motivation has been to study the graphs associated with geometrical 

configurations, i.e. finite sets of  irreducible subvarieties o f  a given variety, the graph 

structure corresponding to the inclusion ordering. Looking at the methods o f  resolution 

o f  singularities [3, 6, 7] we introduce in [5] a notion of  blowing up valid for ori- 
ented acyclic graphs, where in the case o f  graphs of  good geometrical configurations, 

the transformed graph is associated with the blown up configuration. Moreover, as in 
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geometry, we also proved in [5] that there exists a desingularization process for oriented 
acyclic graphs which allows us to better understand their combinatorial structure. 

When the graph is reduced the process of  desingularization is simpler (see Section 1 
below) and it presents special features. The purpose of  this paper is to use this process 
to classify reduced graphs by means of  a natural relation which, for obvious reasons, 
we call birational equivalence. 

In Section 1 we describe the process of  desingularization in a forest (Z,H) for 
reduced graphs using the fact that a partial ordering is uniquely determined by its 
maximal chains [4]. We see how ordered labelings on a graph (X, G) induce ordered 
labelings on its desingularizations. These labelings show how the points of  the desingu- 
larized graph (Z,H) are uniquely determined by the paths on the graph (X,G) ending 
in maximal points. In Section 2 we show how the label set on the forest (Z,H) deter- 
mines the original graph and we use this fact to characterize arithmetically the possible 
ordered label sets on a forest in such a way that we can characterize arithmetically a 
reduced graph in a natural way. In Section 3 we count the number of  ways of  doing it. 

In Section 4 we describe the opposite process to desingularization and we give 
a characterization of  the conditions under which it is possible to recover a reduced 
graph from its desingularization, the forest (Z,H). Reduced graphs with isomorphic 

desingularizations are called birationality equivalent, a birational morphism being a 
graph morphism inducing an isomorphism between their desingularizing forests. The 
terminology is, here, completely analogous to that in algebraic geometry and the theory 
is similar to that of  algebraic curves [2]. Reduced graphs in a class module birational 
equivalence can be partially ordered, the arcs being the birational morphisms (Sec- 
tion 5). I f  (Z,H) is the common forest for the class, our general objective is to study 
this ordered set l s o ( Z , H )  that contains one maximal element, the forest (Z,H) itself, 
but in general it has several minimals. Section 6 is devoted to proving the existence 
o f  a canonical contraction with a minimal number of  points and arcs representing the 
class I s o ( Z , H ) .  This graph is explicitly described and it is, in a certain sense, the 
smallest object containing all information in the forest. In Section 7 we give some 

additional properties of  the structure on I s o ( Z , H )  to clarify it. 

1. Desingularization of reduced graphs. Basic concepts and notations 

Let us introduce the basic concepts and notations which we will use in the paper. 
By a graph we mean a couple (X,G) where X is a finite set and G CXxX-  {(x,x) [ 

x E X}.  The elements in X and G are called points and arcs, respectively, and if  

(x,y)EG then x is said to be adjacent to y. 
A labeling of  X by the label set E is a bijective map x : E --+ X, x_(e) being denoted 

by Xe for any eEE. For a labeled graph we mean a graph (X,G)  with a labeling on 

the set X. 
For two given graphs (X, G), (X r, G ~) a graph morphism is a mapping A : X ~ X r 

such that for every arc (x, y ) E  G, one has either A(x)= A(y) or (A(x), A(y))E G'. The 
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morphism is an isomorphism if it has an inverse, i.e. if A is bijective and (x, y )  E G 
iff (A(x), A(y) )  E G r. By a non-labeled graph we will mean an equivalence class o f  

isomorphic graphs. 
A sequence of  points in X will be considered as a mapping s : { 1,2 . . . . .  q} -+ X, 

q _> 2, or alternatively as s(1) s(2) - . .  s(q) or xlx2...Xq. A sequence such that 

(s(i), s(i + 1 )) E G is called a walk joining xl with Xq in (X, G) o f  length q - 1. When 

xl =xq the walk is said to be closed, i f s  is injective the walk is called a path, and if s 

is closed and injective on { 1,2 . . . . .  q -  1 } the walk is called a cycle. A graph is said to 

be acyclic if it has no cycles. Finally, a semiwalk in (X, G) we mean a sequence such 
that for any i, 1 < i < q -  1, one has either (s(i), ( i+  1)) E G or (s( i+ 1), s(i)) E G. 

By a subgraph of  (X, G) we will mean a graph (Y,H)  with Y C X  and H C G. The 
subgraph will be called a partial graph when Y = X. On the other hand, by the induced 
subgraph we will mean the graph (Y, G/Y) where G/Y = G A (Y x Y). 

For a graph (X, G) the dual graph is (X, G d) where G d = {(x, y)  l (y ,x)  E G}. 
For a point x E X we will consider the sets 2 (resp. x*) consisting o f  x and those 

points y E X such that there exists a path joining y to x (resp. x to y). The set 2 will 

be called the closure of x. 
Acyclic graphs have some interesting properties. 
Firstly, for an acyclic graph there exists at least one point x (resp. y )  such that 

2 =  {x} (resp. y* = {y}).  Such a point will be called a minimal (resp. maximal) in 

the graph. Moreover, the points in an acyclic graph (X, G) can be distributed by levels 

No, Nl . . . .  as follows: 

No = {x E X I x is minimal in (X, G)} 

and recursively for p _> 1 

p--1 p--1 

Np = x E X - U Ni Ix is minimal in - Ni, G/X - Ni . 
i = 0  i = 0  

Thus one has a partition o f  X,  X = Ukp = 0 Np, k being the dimension of  the graph, 
i.e. the last index such that Nk # 4). The equivalence relationship associated to this 

partition is the "equality of  heights between points of  X"  where the height of  x E X  is 

h ( x ) =  the length o f  the largest path ending in x. So xCNp if and only if h ( x ) =  p. 
Secondly, we have the following characterization o f  acyclic graphs [5]: a graph 

(X,G), with c a r d ( X ) = n ,  is acyclic if and only if, there exists a labeling of  X by 

the label set E =  {1 . . . . .  n} such that if (xi, xj) E G then i < j .  To prove it, it is 

enough to consider the above partition and to give a bijection x_ : E ---* X such that, 

for every m E E, 

p - I  p 

x(m)=xmEUp,C* Z n i  <m <_ ~ n i ,  
i = 0  i = 0  

where ni = card (Ni) and 0 < m _< no, if p = 0. 
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On the other hand, we can consider the set of  maximal points M in the acyclic 
graph (X,G). A path s :  {1 . . . . .  q} --~X will be said to be a path with maximal end 
if s(q)E M, and furthermore if s (1 )E  No then the path will be called maximal. The 
morphisms which take maximal points in maximal points will be called dominant. 

For a graph (X, G) the equivalence relationship "x - y"  iff x and y are in a "semi- 
walk" gives rise to the partition of X into connected components X =X~ U . - .  U Xr. 
Properly speaking the connected components are the induced subgraph (iV/, G/Xi). 

For a non-maximal point x E X - M in a graph (X, G) the outdegree is defined as 
Od (x) = Card {y I (x, y)  E G}. The point x will he said to be regular if  Od (x) = 1 and 
singular otherwise. A tree is an acyclic graph for which there exists a maximal point 
y E X such that for every x ~ y there is a unique path xl ...Xq with xl = x  and Xq= 
y. The point y is unique and a tree has no singular points. The graphs with no singular 

points are exactly the fi~rests, i.e. the graphs whose connected components are trees. 
A graph (X,G) is said to be transitive if for every pair of arcs (x,y), (y ,z)  with 

x ¢ z, then (x,z) is an arc. The graph is antisymmetric if it has no pair of symmetric 
arcs. Antisymmetry and acyclicity are equivalent properties for transitive graphs (if 
(x,y) and (y,x) are arcs, then xyx is a cycle; and conversely, if x l "  .Xq is a cycle, 

then both (xl,Xq-l) and (Xq-l,Xl) are arcs). 
Often a partial ordering (and so its homologous antisymmetric transitive graph and 

T0-topological space) is represented by a picture in which those arcs which are redun- 
dant by transitivity are dropped. The homologous graph of this picture will be called 

"reduced" and it is also known as Hasse diagram. 
A partial graph (X,G r) of  an antisymmetric transitive graph (X,G) will be said to 

be r e d u c e d i f G r = G - { ( x , y )  E G I there exists a path x~...Xq in (X,G) with q _> 3 
such that x1 = x  and Xq = y}. Without mention of the original partial ordering, a graph 
(X,G) is reduced if it is acyclic and if (x,y) is an arc, then there is no other path 

joining x with y. 
In this paragraph we shall transform a reduced graph into one without singular points. 

This transformation will affect each singular point and consists in the removal of  the 
arcs that leave from it. Each arc is preserved, maintaining the induced subgraph in the 
closure of the singular point on its lower extreme. This transformation is performed in 
an orderly way, by levels from No to Ark, and can be interpreted as a well arranged 

desingularization of the reduced graph. 

Definition 1.1. A graph (X, G) is said to be an E-orderly graph if X is labeled by a 
totally ordered label set E and the bijection x_ : E -~ X, with x( i ) - -xi ,  verifies that 
if  (xi,x;) E G then i < j .  I f  E - -  {1 . . . . .  n) we will say that the E-orderly graph is 

naturally ordered. 

Observation 1.2. Note that if (X, G) is an E-orderly reduced graph, the partial ordering 
associated with (X, G) is a less fine order than the image order of  that of  E through the 
bijection x_ and, therefore, to give an E-order on a reduced graph (X, G) is essentially to 
give a total order on X finer than the partial ordering associated with the graph (X, G). 
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Definition 1.3. The desingularized of a reduced graph (X, G) is the graph (X, G) where 
)(  is the set of paths with maximal end together with the set of maximal points M 
and 0 = {(x, y) E )( × )( Ix q~ M and y is the path obtained from x by deleting the 
first element}. 

If the reduced graph (X,G) is labeled by means of E =  {1 . . . . .  n} by the bijection 
x • E --~ X, then the desingularized graph ()(, 0 )  will be considered to be labeled by 

= {A C E Ix A E )(} by means of the bijection £"/~ --~ )( given by £(A) =xi, " .Xiq E 
)(, where X_A denotes the restriction o fx  to the naturally ordered set A = {il < --. < iq}. 
Moreover, if the reduced graph (X, G) is naturally ordered by E = {1, . . . ,n},  then /~ 
is totally ordered by the lexicographic ordering and therefore, the desingularized graph 
(X, 0 )  is an E-orderly graph. 

Proposition 1.4. The desingularized graph (X, G) of a reduced graph is a forest with 
m trees, where m = Card(M). 

Proof. If (x ,y)  E (~ and x=xi~ ...xiq then y=xi: . . . x iq ,  so O d ( x ) =  1 and there is no 
singular point in ()(, G). It is also clear that in ()(, G) there are many maximal points 

as in (X,G). [] 

The map n • ()(, (~) --~ (X, G) given by n(xl . . .Xq)=Xl  is a dominant morphism and 
will be called desingularization of the reduced graph (X, G). 

2. Arithmetical characterization of reduced graphs 

Each non-maximal point of the reduced graph (X, G) gives rise to a new point in the 
desingularized (Jr, G) for each one of the paths with maximal end in (X, G) starting 

from it. 

Proposition 2.1. The labels of the level No in (X,G)  describe the graph from the 

start (X, G). 

Proof. It is clear that x, E X if and only if xi is in the label of some minimal point 
of ()( ,G) and (xi,xj) E G if and only if xi and xj are consecutive (in that order) in 

the label of some point of N0 in (X, G). Thus, 

X =  U {xi being in the label of x E N0 CX},  

xE~0 

G = {(xi ,xy)i3x =Xj,'''XyrXjr+,'''Xj, E N0 in ()(, G) with i= j r  and j =jr+l  }. 

[] 

We can ask under what conditions a collection of labels defines a reduced graph 
(X, G), i.e. "when A C P(E) represents a reduced graph (X, G), A being the label set 
of the minimal points of its desingularized ()(, G)?" The labels A E P(E)  should be 

interpreted as maximal paths in the graph (X, G). 
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Theorem 2.2 (Determination of a reduced graph by means of labels). Let E =  

{1 . . . . .  n} and A C P ( E ) .  For every A E A we assume that A is naturally ordered A 
determines a reduced graph (X, G), A being the label set o f  the minimal points o f  its 

desingularized (2 ,  G), /f and only i f  the following conditions hoM: 
(a) E is the joint o f  the dements A E A. 

(b) I f  p is the first element of  A and p E B, with B E A, then p is the first element 
o f  B; and i f  p is the last element o f  A and p E B, with B E A, then p is the last 
element o f  B. 

(c) I f  p ,q  E A such that q does not follow p in A and p ,q  E B, with B E A, then 
q does not follow p in B. 

In this case X = E  and (p ,q)  E G i f  and only i f  there exists A E A, with p,q E A, 
such that q follows p in A. 

Proof. The conditions (a) - (c)  are clearly necessary. Conversely, the natural ordering 
allows us to interpret A as a path (injective sequence); (b) means that these paths are 
maximals (they start in the level No and end in a maximal point) and (e) imposes the 
reduction of the graph (the graph is acyclie because A is naturally ordered). 

Therefore we can interpret A as a collection of maximal paths of a reduced graph 
(x, a) .  [] 

Remark 2.3. The set A only contains a collection of maximal paths sufficient "to 
cover" G, but A does not represent all maximal paths of (X, G). For example, A = 
{{1,3,4,6}, {2,3,5,6}} covers the reduced graph 

6 

(X,G) = 4 5~ 

1 2 

however the maximal path set is A U {{1,3,5,6},{2,3,4,6}}. 

As a consequence of the above theorem, the following condition guarantees that the 
labels of A represent all maximal paths of a reduced graph (X, G): 

(d) Let No = {first elements o f  the sets A E A} and M = {last elements o f  the sets 
A E A}.  I f  B ~-{Pl . . . . .  Pro} is a naturally ordered subset o f  E such that pl E No, 
pm E M and for every j =  1 , . . . ,m - 1 there exists Aj E A with pj, Pj+a E Aj and 

such that Pj+I follows pj in Aj, then BEA. 
In this way we have the following result. 
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Theorem 2.4 (Characterization of  label sets o f  reduced graphs). Let E =  {1 . . . . .  n} 
and A be a subset of  parts (naturally ordered) of  E verifying the conditions ( a ) - (d ) .  
Then, there exists a unique reduced graph (X, G) with card ( X ) =  n and a unique la- 
beling x : E ---, X of X by the label set E such that (X, G) is E-ordered and A is the 
label set of  the level ]~o of its desingularized (X, G). 

ProoL It will be enough to prove that every path starting in the level No and ending 
in a maximal point o f  (X, G) is an element of  A. Let B be the naturally ordered 
set corresponding to such a path; clearly B satisfies the condition (d) and therefore 
B E A .  

In Section 1 we have characterized an acyclic graph (X, G) by means of  the existence 
of  a labeling of  X by E =  {1 . . . . .  n} under the condition (xi,xj) E G =~ i < j .  If, 

p--I moreover, this labeling verifies xm c Np ~=~ ~ i  =0 ni < m <_ Y~P=0 ni then the graph 
(X, G) is naturally ordered. But the reciprocal is not generally true. 

Definition 2.5. Let E be a totally ordered finite set, (X, G)  an E-ordered acyclic graph 
and X =  Ukp=oNp its partition in levels. The graph (X,G) is said to be E-ordered by 
levels i f  xi E Np, xj E Nq, with p < q, then i < j .  In the particular case E = {1 . . . . .  n} 
the graph (X, G) is said to be naturally ordered by levels. Thus, with notations as above, 

p-1 one has (X,G) is naturally ordered by levels if  and only if Y~'~i:0 ni < m _< ~ P : 0  n~, 
p - I  for any xi E Np, i E E, and for any p = 0, 1 . . . . .  k (it is understood that Y~'~i : 0 ni = 0 

when p = 0). 

Definition 2.6. Assume that E is {1 . . . . .  n} and that the set A c P (E)  satisfies the 
above mentioned conditions ( a ) - ( d ) .  Then, for every i E E, the maximum number of  
places occupied by i in the sets A E A which contain it will be called length of  i and 
will be denoted by l(i). It is clear that the set A determines a naturally ordered graph 

verifying xi E Np ~ l ( i )= p. 

Theorem 2.7 (Characterization of  labels ordered by lengths). Let E = {1 . . . . .  n} and 
A C P(E)  with every A E A naturally ordered. A is the collection of labels of  the 
minimal points of  the desingularized of a reduced graph (X, G) naturally ordered by 
levels i f  and only i f  A verifies the conditions ( a ) - ( d )  and 

(e) l(i) < l ( j )  ~ i < j. 

Proof. After Theorem 2.4 it is enough to bear in mind that the equality of  heights 
between points of  X is the equivalence relationship associated to the partition of  X in 

levels. Thus xi E Np <:~ h(xi) = p. [] 

3. Number of naturally ordered labelings for a non-labeled reduced graph 

The preceding theorems allow us to recover a non-labeled reduced graph from a 
collection of labels in its desingularized graph; however, the same non-labeled reduced 
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graph will generally have several o f  these label sets assigned, since there exists more 

than one natural ordering on a graph and, furthermore, more than one natural ordering 
by levels. 

We can now study the number o f  possible natural orderings, or natural ordering by 
levels, or collections of  labels according to the above theorems. 

Let E = (1 . . . . .  n} and A C P(E)  under the conditions ( a ) - ( d )  and let (X, G) be the 

associated non-labeled reduced graph. We will denote the permutation group of  E by S~ 
and by B the subgroup of  S~ formed by the permutations b : E ---, E such that, for every 

A E A, i f A = { i l  < . . -  < iq} then b(il) < . . .  <b(iq). Let B o C B  be the subgroup of  
B formed by those permutations b E B such that b(A) E A, for any A E A. 

Proposition 3.1. (1) The number of  natural orderinys on the non-labeled reduced 
graph (X, G) is equal to the cardinal o f  B. 

(2) The automorphism 9roup of  the non-labeled reduced graph (X, G) is isomorphic 
to the group Bo. In particular, Card (Aut (X, G)) = Card (B0). 

(3) The number of  collections A C P(E)  under the conditions ( a ) - (d )  determining 
the non-labeled reduced 9raph (X, G) is equal to Card (B)/Card (B0). 

Proof.  In fact, it is clear that if x • E ~ X is a labeling providing a natural ordering 
on (X, G) and if b E B, then x0b • E ~ X is, again, a labeling providing a natural 
ordering on (X, G). Reciprocally, if x_ : E --* X, xZ • E -~ X are two labelings providing 
natural orderings on (X,G), then the bijection b : E -+ E given by b = ~ l x _  / is an 

element of  B. Therefore, with a fixed collection A under the conditions ( a ) - ( d )  and 

the associated labeling x_ • E --~ X (providing a natural ordering on (X, G)), then 

the correspondence that associates the element ~olx_ ' of  B to each natural ordering 
x_ t : E  - + X ,  is a bijection. This proves ( l) .  

(2) is derived from the fact that if x • E -+ X is a labeling of  (X, G) corresponding 

to the collection A, then each automorphism a • (X, G) -~ (X, G) determines a bijection 
b : E - - - , E  with the property b E B and b(A) E A, for a n y A  E A. Conversely, if 

b E B is a permutation with the property b(A) E A, for any A E A, then b determines 
a bijection cr : X --* X, which is, clearly, an isomorphism when we consider cr : 
(X, G) --~ (X, G) as a graph application. 

To prove (3) it is enough to bear in mind that if  C is { A c P ( E ) }  verifying the 

conditions ( a ) - (d )  and determining the same reduced graph (X, G), then the group B 

acts transitively on C and, therefore, this action has only one orbit C. The isotropy 

group of  the element A E C is B0, and therefore Card (C)Card (B0) = Card (B). [] 

I f  we consider natural orderings by levels we can prove a similar proposition. 

Now, let A C P(E)  be under the conditions ( a ) - ( e )  and let (X,G) be the non- 
labeled reduced graph associated to A. Let C be the subgroup of  Sn formed by those 

permutations b E Sn such that for every A E A, if A = {il < • • • < iq} then b(il ) < 
• .. < b(iq) and furthermore for every i c E, l(i) = l(b(i)). And let Co be the subgroup 
of  C formed by those b C C such that b(A) E A, for any A E A. Then, we have 
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Proposition 3.2. (1) The number of  natural orderings by levels on the non-labeled 
reduced graph (X, G) is equal to the Card (C). 

(2) The automorphism groups of  the non-labeled graph (X, G) is isomorphic to the 
group Co. In particular, Card (Aut (X, G)) = Card (Co). 

(3) The number of sets A C P(E) subject to the conditions (a)-(e) determining the 
same non-labeled reduced graph (X, G) is equal to Card(C)/Card(Co). 

The proof is identical to that of the previous proposition. 

k Remark 3.3. If X =  Up=oNp is the decomposition of the non-labeled reduced graph 
(X,G) in levels and np is the cardinal of Np, then C is isomorph to the group S~ 0 × 
• "" × Snk and, in particular, Card (C) = n0! " -  nk!. 

4. Contraction of a forest to a reduced graph 

We shall first show how a labeling in (X, G) induces a "prelabeling" in its desin- 
gularized forest (A ~, G) which can be done by using the same label set and in such a 
way as to enable the recuperation of the original structure of (X, G). 

Definition 4.1. A prelabeling on a forest (Z,H) by the prelabel set E is a surjective 
map p" Z --~ E. For every x E Z, p(x) is the prelabel of x. 

Proposition 4.2. Let (X, G) be a reduced graph labeled by E = { 1 ... . .  n }, with x(i) = xi, 
and let (X, G) be its desingularized forest labeled by E. The following properties hoM: 

(a) The map p : X  ~ E such that p(xi, ...x,q)=il for any xi~...xiq E X, is a 
prelabeling on (X, G) by E. 

(b) I f  K is the arc set given by 

K =  {(i,j) E ExEfthere exists (x,y) E 0 with p ( x ) = i  and p ( y ) = j }  

then the labeling bijection x ' E  --- X is a graph isomorphism between (E,K) and 

(X, G). 

6 6 6 6 

4 ~  n 4 6 ~ / ~  56 p ~ 5 r e c u p e - ~ k ~  5 
5 3 ~ k ~  ~ 6  ~ ~ r a t i o n  " ~  

1 2 1346 2346 1356 2356 1 2 1 2 1 2 

(X,G) (.~, (~) by/~ (.~,G) by E (X,G) 
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We shall now demostrate a natural way of finding reduced graphs with a given 
desingularized forest (up to isomorphism). With a non-labeled forest fixed, the idea 
is to give (not necessarily different) labels to its points such that the label identifica- 
tion allows us to find the required reduced graph as a quotient. The next definition 
determines exactly our objective and imposes conditions on the prelabeling. 

Definition 4.3. Let (Z,H) be a forest prelabeled by E by map p : Z  --+ E. and K---- 
{(i , j)  E ExE I there exists (x, y)  E H with p(x) = i and p (y )  = j } .  The surjection p is 
said to be a contractive map on the forest (Z,H) if (E,K) is a reduced graph labeled by 
E such that its desingularized (/~,/£) prelabeled by E is the forest (Z,H), i.e. (/~,K) and 

(Z,H) are isomorphic forests by means of an isomorphism preserving the prelabelings 
by E in both forests. In this case, (E,K) will be called the p-contraction of (Z,H).  

Notice that Proposition 4.2 assures that every reduced graph labeled by E is the 
p-contraction of its desingularized forest for the contractive map p(x i , ' . . x iq)=i l  
and so a forest admits as many p-contractions as reduced graphs are desingularized 
by it. 

Now we try to give the conditions in which that a forest prelabeling leads to a 
p-contraction. The key is to know when two different points in the forest can have 
or not the same prelabel. The following observations about the relationship between 
a reduced graph and its desingularized forest give some necessary conditions for this 
prelabeling. First let us give a useful definition. 

Definition 4.4. Let (Z,H) be a forest and M its maximal set. For every pair x ,y  E 
Z - M, x is said to cover y if there exists a path joining y with that which follows 
x. This relation is a preordering and two points have the same followers if one covers 
the other one, and conversely. 

Observations 4.5. (1) The desingularized forest has as many trees as maximal points 
in the reduced graph, so the maximals must carry different prelabels. 

(2) I f  a forest point x covers another point y, then x and y must have different 

prelabels. 
(3) Since the "desingularization" of  a singular point x yields several copies of  

(Y, G/2), not connected among themselves in the forest (X, G), we must classify the 
non-connected isomorphic induced subgraphs in the forest. Given two of them (2, G/2) 
and (~, G,@), the points of the sets 2 -  {x} and )3 - {y} can have the same prelabeling 
(same prelabeling set preserved by the isomorphism). In this case the points x and y 
can carry the same prelabel only if they are not maximals and if each one does not 

cover the other. 

Theorem 4.6. I f  (Z,H)  is an E-prelabeled forest by map p : Z  ---* E and K = {(i , j)  E 
ExEIthere exists (x,y)  E H with p ( x ) = i  and p ( y ) = j } ,  then (E,K) is the p- 
contraction of (Z,H) i f  and only if, for every x ,y  c Z with p (x )=  p(y)  the following 
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conditions hold: 
(1) x and y are not maximals. 
(2) Neither x covers y nor y covers x. 
(3) There exists a graph isornorphism A :(Y,H/2~) --~ (~,H/f;)  such that p ( z ) =  

p(A(z)) ,  for  any z E £ 

Proof.  We have already commented the necessity of  these conditions. Conversely: 
(a) (E ,K)  is a reduced graph. 
I f  otherwise, there is an arc ( i , j )  E K coming from an arc (x, y )  E H with p(x)  = i, 

p ( x ) = j ,  and there is also a path ili2 ".'iq in (E ,K)  with il = i ,  i q = j  and q > 2. 
In this path, the arc (iq_~,iq) comes from (Xq-l,Xq) E H with p(Xq-1)=iq-1  and 

p(Xq) = iq, and the a r c  (iq-2, iq_l ) comes from (Yq-2, Yq- 1 ) E H with p(Yq-2 ) = iq-2 
and p ( y q _ l ) = i q _ l ,  so 27q-1 ~ fiq-i and therefore the point Xq-2 = A - l ( Y q - 2 )  is such 
that p(Xq_2)-~iq_2; then there is a path Xq_2Xq_lXq in (Z ,H)  prelabeled by the path 
iq_2iq_~iq of  (E,K).  Recursively, one gets a path x lx2" . . xq  in (Z ,H)  prelabeled by 

the path ili2 . . . iq  with p(xk )=ik ,  for any k----1, . . . ,q .  
I f  xq = y, then x covers xl which contradicts p(x)  = p(xl ) = i. 

iq 1 ~ '  iq =j 

I 
I 

tl=i 

Xq 1 

x 2 

Xq=y---~ j 

~ x----~ i 

I 

I 

L 
x I 

I f  Xq ~ y, since they have the same prelabel j ,  then Yq ~ f: for some A. As xl E 2~q, 
its homologous A(xl)  is in 35 and p(xl ) =  p(A(xl  ) ) =  i, therefore in )3 there are two 
points, x and A(xl ), with the same prelabel i, such that x covers A(xl ), in contradiction 

with condition (2). 

I f  

P Xq_  1 

b X 2 

PX t 

then 

Xq-i 

x2 

xl 

Xq y 

i i 
i i 
I i 

,. i i ~Y- A(x 0 
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(b) (P ,R)  = (Z,H). 
The dominant morphism p : ( Z , H )  ---* (E,K) induces a morphism /3 between the 

desingularized forests ( Z , / 1 ) = ( Z , H )  and (E,/£). The morphism /3 is surjective, be- 
cause each path in (E,K) induces at least a path in (Z,H). The morphism /3 is also 
injective, since if xl ...Xq and x~ -..Xq are two paths with maximal end, and the same 
length carrying the same prelabel sequence i j . . .  iq, then xj = x~ for any j = 1 . . . . .  q. In 

• ' have the are maximals with the same label, so Xq =X'q , Xq-1 and Xq_ 1 fact, Xq and Xq 
same following and equal prelabeling, therefore Xq-i =X~q_l and so on. Finally, /~ is a 
graph morphism by construction, since the correspondence between arcs associated to 
/3 is clearly a bijection. E2 

5. The ordered set of  the p-contractions of  a forest 

Theorem 5.1. I f  3"(X, G) ~ (X', G') is a dominant morphism of reduced graphs and 
/ f  n : ()(, G) --~ (X, G) and 7r' : (3?', G') ~ (X', G') are the respective desingularizations 
of (X, G) and (X', G'), then there exists a unique dominant morphism zi: (X, (~) --~ 

()(', G') such that Aon =n'oA. 

Proof. If x is the path xlx2 ...Xq E )(  and x' is the sequence x' = A(xl )d(x2). .  • A(xq) 
where the repeated points have been removed, then d(Xq) is maximal since A is dom- 
inant and so A(x )=x '  is the dominant morphism that we are looking for. This mor- 
phism is unique because if ~ : ( k ,  0 )  ~ (.,~', 0 ' )  is another morphism with Aon= 7Z'o~ 
and x =XlX2 ...Xq E )(  then one has the following two possibilities. If q =  1, since 
n'oA=n~o ~ and the restriction of n' to M is the identity, then z i=  ~. If q > 1, let 
y=x2". .Xq,  so by induction hypothesis z ] (y)= 7t(y). Since (x,y)  E G then one has 
either (~(x) ,  7J(y)) E G~ or tP(x) = ~P(y) and hU(x) is a path AA(x2). . .  A(xq). On the 
other hand n'o~(X ) = Aon(X)= A(xl ) so ~U(x) is a path starting in d(Xl) and therefore 

q'(x) = J(x).  [] 

Corollary 5.2 (Universal property of desingularization). Let (X, G) be a reduced 
graph and n:()( , (~)  ~ (X,G) its desingularization. Then, for every forest (Z,H) 
and every dominant morphism A :(Z,H) --~ (X,G) there exists a unique morphism 
A ' : (Z ,H)  ~ (X, G) such that nod ~ = A. The morphism A' is dominant. 

It is sufficient to bear in mind that ( Z , H ) = ( Z , H )  and that its desingularization is 

the identity. Then A ' =  z]. 

Definition 5.3. A morphism between reduced graphs A "(X,G) ~ (X ' ,G ' )  will be 
called a birational morphism if it induces an isomorphism z~ between their desingu- 
larized forests. The desingularization of a reduced graph is an example of birational 

morphism. 
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Proposition 5.4. Let A:(X, G) ~ (X', G') be a birational morphisrn between reduced 
graphs. Then 

(a) The map A is surjective. 
(b) A induces a surjective map between the arc sets A : G --~ G'. 

Proof. If x ~ E X r is not the image of any point of X then every path with maximal 
end starting in x r cannot be the image of any path with maximal end in (X, G) in 
contradiction with the bijectiveness of A. On the other hand, the map carrying the arc 
(x,y)  E G into the arc (A(x), A(y))  E G' (notice that A(x) ¢ A(y))  is also surjective 
because if (x~,y ') E G ~ is not the image by A of some arc of G, then every path 
with maximal end in (X~,G ') including the arc (x~,y ') could not be in the image 
of A. [] 

Corollary 5.5. I f  (X,G) and (X ' ,G' )  are reduced graphs and there are birational 
morphisms A : (X, G) -+ (X', G') and A t : (X', G') --~ (X, G), then both A and A' are 

graph isomorphisms. 

In fact, Card ( X ) =  Card (X'), Card ( G ) =  Card (G') and A and A' are both surjective 
morphisms, therefore they are isomorphisms. 

After this corollary it is possible to define the following partial ordering. 

Definition 5.6. Let (Z,H) be a non-labeled forest and (X, G), (X', G') two non-labeled 
reduced graphs with desingularized (Z,H). Then we will write (X,G) <_ (Xt, G ~) if 
there exists a birational morphism A : (X', G r) ~ (X, G). 

Next we will study this partial ordering. Clearly, it has a maximal element (Z,H)  
itself, since a reduced graph is a forest if and only if, it is isomorphic to its desin- 
gularized form. In general, this partial ordering will have several minimals. We shall 
construct a canonical reduced graph with minimal number of points and minimal num- 

ber of arcs. 

6. Minimal canonical contraction of a forest 

6.1. General observations 

For every non-labeled forest (Z,H)  we will give a prelabel set E and a contractive 
map p, both canonical. After Theorem 4.6, condition (1) suggests prelabeling the 
maximal points separately. Condition (3) demands classification of the points by levels, 
and in each level by their closures. This gives us two indices to each prelabel. Condition 
(2) is opposite to the others: two points in the forest with the same prelabel must be 
in the same level and they will have the same closure, but their respective followers 
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are different and they are placed in arbitrary levels. Moreover, since one of these 
points is not coveting the other, they are adjacent to different maximal paths. Thus, in 
order to describe the conditions for a canonical contraction with minimal Card (E) it 
is necessary to enter the prelabeling by levels. 

6.2. First observations about the prelabelin 9 of  the level No 

In a graphic representation of a forest we will place the points of the same level 
at the same height in the drawing. All the No points have the same closure so it is 
only possible to distinguish them by the level of  their respective followers. Thus, in 
this particular case, we will place the No points joined to their followers by an arc of 
"height" one. 

l 2 1  2 1 2 3 4  
wrong correct 

Among all points covered by the point x in the correct forest, only those points 

joined to the "support path" by exactly one arc must be counted. Thus, for the tree 
on the left, 5 prelabels are enough while, for the tree on the tight, 6 are needed. 
Then the forest does not need more than 6 different prelabels. In the following picture 
all prelabeling points with x cover the same number (5) of  No points with different 
prelabels. 

/ 

The questions are: How to define this number of  prelabels? How to choose the 
"branch" of the tree with prelabeling "support" for the other "branches"? 

Since we must identify points with followers in different levels, we can make it 
orderly; for example, for every "branch" of each tree we can order the necessary 
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prelabels in No according to the levels of their followers and then we can make the 
identification preserving this order. The picture shows this procedure. 

4 7 
2 

1 2 1 2 

This is not only an optional idea, it is necessary for the contraction to be canonical. 

For example: 

1 2 1 1 1 2 

while 

2 1 
1 2 2 1 

6.3. First observations about the prelabeling of the level Np, p > 0 

For the Np points with the same closure it is only possible to distinguish them by 
means of their followers. The situation is similar to the level No. For instance: 

m 

a 

m ¢ 

a a a 

m m r 

a 

m 

" d ' b ~  e 

a a 

m ~ 

b, 

a a 
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(a) The points b and c are of the same level and have the same closure; however, 
they do not have the same follower and it is not possible to identify them because c 
covers b. 

(b) To define an ordering in No prelabels for each one of the "support branches" is 
fundamental in order that the desingularized of the contracting graph be the original 
non-labeled forest. Having fixed the prelabels b and c in the left tree, it is not possible 
to interchange the prelabels b and c in the right tree. 

Once the No points have been prelabeled, the procedure for prelabeling the Np 
points is as follows: to classify these points by having an equal closure and for ev- 
ery one of these classes we will consider the induced forest obtained by removing 
each one of their equal closures by its maximal point. Then we prelabel these new No 
points. Next, we can repeat this operation for every class and the complete procedure 
for p = l  . . . . .  k -  1. The step p = k = d i m ( Z , H )  would correspond to the maximal 

points. 

6.4. Canonical prelabeling of a forest 

Firstly, we will give the minimal number of prelabels for the level No, the "sup- 
port branches" of the contracting graph, the ordering in the prelabeling and the iden- 
tification mentioned before. Then we will extend these operations to the other lev- 
els, and finally we will give a minimal canonical contraction of a forest as 

sought. 
k N The classification of a forest (Z,H) in levels Z - -  Up=0 p with k = d i m ( Z , H )  in- 

duces a partition in the maximal set M and it classifies the Np -points by the levels 
of their followers. We will denote maximal set in level Np by Mp = M  A Np and 
the Np-points with follower in the level Nq by N p = {x E Npl£ E Nq} (~ denotes 
the follower of x). Note that Mp (resp. Nq p) can be empty for some p (resp. p 

and q). 

Definition 6.4.1. The paths in a forest are fully described by their extremes. Thus, the 

path x x l - - . x , z  can be briefly denoted by [x,z]. 
A path [x,y] with x E No and y E M (i.e. a maximal path) is called a branch 

of the forest. When x E N~ the branch is said to be a principal branch (i.e. Y E 
N~ ). For a branch [x, y] the budding is defined as b[x, y] = {z E No I:T E [x, y]}. The 
points of b[x, y] are called buds, and z will be a bud of level Nq if z E No q (i.e. 

E Nq). The budded branch of [x,y] is the induced subgraph in [x, y]b = [x, y] ~J 
b[x, y]. 

Proposition 6.4.2. (a) Every branch has at least one bud. 
(b) Two different branches with some common buds are in the same tree. 
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(c) I f  two different branches have a common bud, then they have in common all 
buds o f  equal or upper level. 

(d) In every branch there is at least one bud coverin9 all the others. 
(e) For every branch [x, y] there exists a principal branch [z, y] such that b[x, y] C 

b[z, y]. 
(f) The points o f  N o - M o  are buds o f  principal branches. 

Proof. (a) x E b[x, y]. 
(b) I f  [x, y], [u, v] are two branches and z E b[x, y] M b[u, v], then there exist the 

paths [z7, y] and [5', v]. Since there is only one path with maximal end starting in 7 then 
y = v. So the tree @,H/f:) coincides with the tree (g ,H/g)  and contains the branches 
[x, y] and [u, v]. 

(c) Since the paths are unique, [~', y] and [5", v] are the same path and so they have 
the same budding. 

(d) Let q be the greatest integer for which there exists z E br[x, y] with 5' C Nq, 
then for every v E br[x, y] one has ff _< Z and so z covers v. 

(e) I f  [x,y] is principal, it is enough to take z = x .  I f  [x,y] is not principal, then 
x E N q with q > 1, i.e., £ E Nq, with q > 1, so there exists a path of  length q 
starting at a point z E N 1 and ending at £. The branch [z, y] is principal. On the 

other hand, if  u E b[x,y] then ff E [x,y] and ff J: x so tY E [£,y] and x is a bud of  
[z, y]. 

(f) The branch set contains Z -  M0 ; in particular, every point of  No - M 0  is a bud 
in some principal branch. [] 

Corollary 6.4.3. (a) Every budded branch is a subgraph o f  a budded principal 
branch. 

(b) The forest (Z ,H)  is the union of  its budded principal branches and the set of  
disconnected points. This union is not disjoint either for the points or the arcs. Also 
notice that [x, Y]b can equal [u, v]b even if  [x, y] is different from [u, v] (for example 
if  y = v  and Z=ff) .  

Definition and notations 6.4.4 (Prelabelin9 of  the level No). We will call dimension 
of  level No in the forest ( Z , H )  to the number 

no = dim (N0) = max {Card (b[x, y]) ] Ix, y] is a branch of  (Z, H)} .  

The number no is the cardinality of  the budding of  at least a principal branch. The 
branches with budding of  cardinal no link-up in the level No constituting the support o f  
the contracted graph. In general, it will have several principal branches with budding 

of  cardinal h with 1 < h < no. 
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Let P be the set of  principal branches and Ph = { [x, y] E P I Card (b[x, y] )  = h}, for 
any 1 < h < n o .  

(1) I f  [x,y] E Pno, the points of  b[x,y]  carry prelabels ~oo,--oo,"1 ,.2 . . .  ,Xoo ,no where the 
subscripts indicate that they are in the level No. The superscripts distinguish the 
no buds of  that branch and define a sequence between the prelabels preserving the 
order of  the levels o f  the followers to these no buds, i.e. one has the following 
property 

__ i I f  z, z '  E b[x, y], with Z - Xoo E No p and z'  = x~o E N q, then p < q  ~ i < j .  
It is possible that different branches of  Pno have common buds. These buds have 

unique prelabels, exactly the last q prelabels, q being the number of  common buds 
(Proposition 6.4.2(c)). 

/ 
2 
00 

3  j\oo 
O0 00 

1 2 3 
00 00 O0 

00 

In general, the set o f  buds of  the branches of  P,,o does not contain N o -  Mo. I f  this is 
the case, there are buds in the forest without a prelabel. Condition (3) in Theorem 4.6 
forces us to act in a descending order, i.e. recursively for no - 1 < h < 1. 

(2) I f  the buds of  the branches of  Pno,P,o-1 . . . . .  Ph+l have been prelabeled in that 
order and if [x, y] E Ph, there remains a number p of  buds in [x, Y]b without prelabel. 
The prelabels of  these buds will be denoted 1 2 p by Xoo,Xoo . . . . .  Xoo. In this way the h prela- 
bels of  [x, y] are X~o,... ,~oo,'~o0=P . .pl , . . .  ,XooPh-p where pl  . . . . .  P h - p  is a subsequence of  the 
sequence p + 2, p + 3 . . . . .  no. For example, in the following graph: 

Y 

X t X 2 X 3 X 4 X 9 



C Marijudn/Journal of Pure and Applied Algebra 124 (1998) 173-199 191 

no = 5 and there are two branches [xl, y], [x2, y] C Ps, another two [x3, y], Ix4, y] E P4 
and one [is, y] E P3 which will be prelabeled in an orderly way as follows: 

: 4" oo 
3 4  3 4  

3 4  3 0 4 0 / ~  00 /X '~  [ 0 ; 4 g / / ~ O ; g / / ~  l 

1 2 1 2 1 2 1 2 1 2 1 
00 O0 00 00 00 00 00 00 00 00 00 

The P5 branches carry prelabels: x010, x020, x30, Xo 04 ,X0 05., the P4 branches: X~o, x020, x30, 
xo50, and the P3 branch: X~o, Xo 03 , X00.5 

(3) The Mo points (disconnected points) will be distinguished by prelabels: x~ 1 . . . . .  
Xoo m°, where mo= Card (Mo). 

Observation 6.4.5. The prelabeling of No is unique up to automorphisms. Automor- 
phisms act on the buds having the same follower and also on the points of Mo. If we 
classify the No points by means of the relation "to have the same follower or to be max- 
imal" and if the classes contain nl,n2, . . . ,nr,  mo points, then the number of automor- 
phisms preserving the prelabeling of No is nl !n2!' '- nr!mo!, where nl + n2 +--"  q-nr _> 
no =dim(N0). The equality is only possible when the forest has only one principal 
branch. 

Definition and notations 6.4.6 (Prelabelin9 o f  the level Np). Firstly we must classify 
the Np points by means of their closures. 

For x, y E Np, x and y have isomorphic closures if their induced trees (2, 7./2), 
(~ ,Z/~)  are isomorphic. This relationship divides Np in classes which will be denoted 
by [Xpl], [Xp2] . . . . .  [Xp~p]. 

For every class [Xpi], i = 1 . . . . .  rp we consider the induced subgraph of the forest 
(Z ,H)  in Gpi = Uxc[xp,]x*, obtaining a new forest [Xpi]*= (Gpi,H/Gpi). 

The N0-points in [Xpi]* are exactly the [Xpi]-points in (Z, H)  . The points of M ~ [Xpi] 
are disconnected points in [Xpi]* and will be denoted by Mpi. 

Let npi be the dimension of No in the forest [Xpi]* and mpi=Card(Mpi). Now, we 
prelabel the level No of [Xpi]* by the procedure described in definition and notations 
6.4.4 and so we will give prelabels x~i, xzi . . . . .  Xp,P' for the non-maximal points and 

--mp~ 
Xpii 1 , Xpii 2 . . . . .  Xpi for disconnected points of [Xpi]* (maximals in (Z ,H)  ). Here the 

notation x~ of [Xpi]* has been changed for x~;~ as a point of the class of closure [Xpi] 
in (Z ,H)  . 

We will call dimension o f  level Np in the forest (Z ,H)  the number np = ~ =  1 npi. 
~-~.i=lmpi=Card(Mp), then np +mp  is the number of prelabels which are If mp= rp 

sufficient for the level Np. 
This prelabeling is unique up to automorphism. Automorphisms act in each [Xpi]* 

on the buds with the same follower and on the maximals. 
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Example  6.4.7. In the following pictures we show the prelabeling o f  the levels No and 

N1 o f  a forest ( Z , H )  and we perform some p-contractions:  

1 i 2 1 1 2 
O0 O0 O0 O0 O0 O0 

1 2 1  2 1  
O0 O0 O0 O0 O0 O0 

~ [ X l l ' =  

00 

[X~l'= 

~00 11 

1--~1 
11 O0 11 

12 

1---~ 1 1 - -~  1 
O0 12 IX) 12 

returning 
P 

to the forest 
1 1 ii~ l~ll I 121~ ii I I~ 121\II ~ 

1 l 2 1 1 2 1 1 2 1 2 1 
O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 

conffacUon, 

c 

t2 

1 2 
O0 O0 

C p 

b' 

a '  

2 
O0 O0 

contraction 
b a 

(~=a') 

11 1 

C r 

1 2 
O0 O0 

2 
12 
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Remark 6.4.8. Note that the separate prelabeling of the classes [Xpi] has been essential 

in the above description. Also note that once the No level has been labeled then, in 

order to label the N1 level, prelabeling the minimal points in ( Z -  No, H / Z -  No) is not 
a good idea as, in this case and in general, one may not obtain minimal cardinality for 

the contraction and its desingularization may not even be the starting forest. 

In the above example ( Z -  No, Z / Z -  No) would be: 

4 ~'~4 ~ 4 

1----1 2----2 1---I  2--)-2 
00 11 00 12 00 11 00 12 

returning 

to the forest 

C 

b 

a 

11 

1 1 2 1 2 
O0 O0 O0 O0 O0 O0 

C S , 

b', 

0 t 

1 , 3 4 
11 ( 

1 2 1 2 1 
O0 O0 O0 O0 O0 O0 

contraction 

1 1 ~  12 

1 2 
00 00 

1 

1 2 
O0 O0 

4 
11 

At the moment, everything is working since these trees are isomorphic to those in 

the above example. However, in these trees there are 6 points in the N1 level with 
pairwise different prelabels. Points in the class [xl2] of both trees can be identified as 

they are isomorphic and have different followers, whereas the fact that the followers 
are at a distinct level, does not allow us to preserve this order in the prelabeling in 

the procedure. 
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Remark  6.4.9. We can prelabel the maximal points o f  (Z ,H)  separately, without bear- 

ing in mind either its level or its closure. If  rn=mo + rnl + . . .  + ink, then m! > 
Y 

too!m1! '"  mk ! and if rnp ~- ~ r =  Imp i, then rap! > I-Ii= l mpi !" Therefore for our prela- 
beling a minimal number of  automorphisms are operating. 

In the following paragraph we summarize the full prelabeling with its conditions. 

Definition 6.4.10 (Canonical prelabeling o f  a forest).  Level No (minimals) 

Xo~o, Xo2o, ., "° where no = d i m ( N o )  in (Z ,H)  , .  X00, 

= max {Card (br[x, y])  : [x, y] is a branch of  (Z ,H)} .  

- .. -mo where m0 = C a r d ( M 0 )  (disconnected points of  (Z ,H)) .  X(~ 1 , XO0 2 . ~ Xo0 

Level Np 

For every p =  1 . . . . .  k -  1 we have the closure classes [xpl] . . . . .  [Xprp] and for every 
class [Xpi] we have 

4 i '  2 n~j = d i m ( N 0 )  i n  [Xpi]* Xpi . . . . .  Xpi , where npi 

with [Xpi]*= (Gpi,H/Gpi) and Gpi = [.J x*. 

Xpii I , Xpii 2 , --mpi . . . .  xpi , where mpi = Card (Mpi ) = Card (M CO [Xpi]). 

Level Nk (maximals) 

We have the closure classes [Xkl] . . . . .  [X~,] and for every class [x~]" 

x~i 1, x~ 2 . . . . .  Xp-i m~' , where ma. = Card (M/a) = Card ( m  N [x~.]). 

The necessary number of  prelabels is n + m, where 

n =  Z d im(Np)=no  + ~_, npi , 
p = 0  p = l  

r e = C a r d ( M ) =  Z r n p = m °  + Z rnpi . 
p = 0  p = l  \ i ~ l  

The set of  these n + m prelabels will be denoted by E. 
Let c :  Z ~ E be the surjective map carrying each point x E Z into its prelabel 

x~i E E. This prelabeling in the forest (Z ,H)  is canonical by construction. 

Theorem 6.4.11. The map c : Z -~ E is c-contractive. 

Proof.  By construction if x, y E Z are points with the same prelabel, then they are not 

maximals and nor does one cover the other; moreover, they have isomorphic closures. 

We will construct an isomorphism A:( .7 ,H/2)  ~ (~,H/f~) such that c ( z ) = c ( d ( z ) ) ,  
for any z E ~?. (Theorem 4.6). 
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(a) I f  x , y  E NI then 2 -  {x}CNo  l and ) 3 -  { y } c N J .  Since these points are 
buds with followers in N1 they cannot be in common with other principal branches, 
and so they receive the first p prelabels of  the no necessary in the level No, where 
p =  Card(2- {x})= C a r d ( ) 3 -  {y}).  These prelabels are x~o, X~o . . . . .  XoPo both for the 
points o f ) ? -  {x} and the points of  )3 - {y}. Any bijection between 2 -  {x} and )3 - {y} 
is an isomorphism since all points are disconnected; therefore, we can take the map 
A : 2 - {x} ~ )3 - {y} which identifies the prelabels of  both sets. 

(b) I f  x , y  E Nq, q > 1 and z E 2, let z ~ be the image of z by any isomorphism 

q~: 2 ~ )3. Let c(z) =x/ i  and c(z') = j' Xp, i, be the prelabels o f  z and z ~. The restriction 

of  • to ff is an isomorphism between the induced subgraphs in ~ and U and therefore 
i =  i' and p = p~. We will denote the corresponding closure class by [Xpi]. We will 
now prove that j - ~ f .  

W 

, x  

/4 /A~ 

(Z,H) [Xp,.]" 

V i 

W p 

,2" 

J J respectively. The prelabels of  z and z ~ as No points of  [Xpi]* are x00, Xo0 
As 2 and )3 are disjoint trees, then 2M[Xpi]* and )3N[Xpi]* are disjoint. I f z  and z'  are 

respective buds for the principal branches [u, v] E Ph and [u ~, v ~] E Ph, with (possibly) 
h ¢ h', then 2 71 [Xpi]* and )3 N [Xpi]* are isomorphic lower parts of  the branches [u,v] 
and [u ~, v'], therefore if Z C Nq also U ~ Nq and there are the same number of  buds 
with followers in lower levels to Nq in the two branches; so z and z ~ occupy the same 
position between the buds of [Xpi]* (module an automorphism acting on the buds of  

[Xpi]* with follower in Nq) and hence j = f .  
(c) Finally, we need to modify the isomorphism 4~ by means of  a permutation 

identifying the prelabels of  the above mentioned buds of  [Xpi]* with their images. This 
is necessary for every pair o f  homologous points z E 2 and z~=4~(z) E )3 and we must 
do it from the bottom up in order. Properly speaking, if w E Nj, j < q, for every closure 
class [Xpi], with p < j ,  we consider the sets Api = {t  E [Xpi] I~ = w} and Api = {t' E 

_ k + l  k+a [Xpi] I F = w' = q~(w)}. Api and Api receive the same prelabel set Xpi . . . . .  Xpi where 
a=Card(Api)=Card(Api  ), and there exists a permutation p :  Api ~ Api such that 
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((I)/Api) o p identifies the prelabels of .4pi points with their images in Apr We perform 
this operation for every p < j and each i such that [Xpi] is a closure class with follower 
in z, The operation is extended to all points w of the same level Nj and we must go 
over the levels in order from j = 1 to j = q - 1. From these modifications we get the 
isomorphism A that we were looking for. [] 

Def in i t ion  6.4.12 (Minimal canonical contraction of  a forest). If  (Z ,H)  is a forest 
canonically prelabeled by means of the contractive map c:Z ---* E of Defini- 
tion 6.4.10 and K = { ( i , j )  E ExE](x ,y)  E H and c(x)=i ,  c ( y ) = j } ,  then the graph 
(E,K) is the c-contraction of (Z,H) and it will be called the canonical contraction of 
the forest (Z,H). The graph (E,K) is clearly prelabeled by E. 

The construction of the canonical prelabeling guarantees that the contracted graph 
(E,K) has a minimal number of points and arcs between the class of reduced graphs 
desingularizing in (Z,H), then in particular the graph (E,K) is a minimal element 
in the partial ordering of Definition 5.6. However, it is not the only graph with 
these properties. The picture shows a reduced graph, its desingularized forest with 
the canonical prelabeling and its prelabeled canonical contraction. Two different con- 
tractions of  the central forest are exhibited which have the same number of  points 

and arcs. 

-1 -1 -2 
21 22 21 

t i l t  1 2 
b 11 11 II 11 * 

1 1 1 1 
00 00 00 00 

-1 -2 -1 
21 21 22 

1 
00 

2 
I1 

7. M o r e  about  the structure o f  the i sodes ingular ized  reduced graph set 

The reduced graph associated to the partial ordering in Definition 5.6 will be denoted 
by Iso(Z,H) .  The following results are also consequences of  the result on contractive 

mappings (Theorem 4.6). 

T h e o r e m  7.1. I f  A: (X,G) ~ ( X ' , G ' )  is a birational reduced graph morphism with 
Card ( X ) =  m and Card (X  ~) = n, then for every q, with n < q < m, there exists a 
reduced graph (X" ,G") ,  with C a r d ( X " ) = q ,  and there exist birational morphisms 

A1 : (X, G) ~ (X", G") and A2: (X'~, G ") ~ (X', G ~) such that A2 o Al = A. 

Proof. It will be enough to prove it for the case q = n + 1. 
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Let x : E ~ X and x'  : E ~ ~ X '  be respective labelings for the reduced graphs 
(X,G) and (X',G') being desingularized in the forest (Z,H). These labelings induce 
prelabelings p :  Z --* E and p' :Z  ~ E' over the forest (Z,H). The map A induces 

surjective map q" E ~ E '  such that q o p = p ' .  So we have the diagram: 

/ ~ E  ~ - X  

z ~_ I q |~ 

X ~ 

where 7z = x o p and n = x' o p '  are the desingularization morphisms induced by the 

prelabelings p and p ' .  
In particular, one has that two points in Z with the same E-prelabel also have the 

same E'-prelabel. Take two points in Z at the greatest possible level with the same 

E'-prelabel and different E-prelabel (the existence follows from the fact n < m). Let 

E 'r be the quotient set obtained by identifying the E-prelabels plus the identification of  

p(x) to p(y). The mapping q : E --~ E '  factorizes through E"  , i.e. one has a diagram: 

Z p "  
tt E wt 

/ 
E' 

By construction it follows that p " =  ro  p is a contractive prelabeling (Theorem 4.6), 

therefore one has a commutative diagram of  birational morphisms: 

(X,G) 

(z,H) (X",G") 

(X',G') 

[ ]  

From the structure of  the reduced graph I s o ( Z , H )  we know that the forest (Z ,H)  

is the maximum of  this graph and that there are in general several minimals with 
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a minimal number of points (picture 6.4.12). From the above theorem one can also 
deduce the following consequences: 

Corollary 7.2. Assume that (Z ,H)  is a forest with Card(Z)--m.  
( I )  For every (X,G) E Iso(Z,H),  with C a r d ( X ) = n ,  there is at least one path 

with maximal end in Iso(Z,H) starting at (X,G) o f  length m -  n. 
Every path with maximal end starting at (X, G) has a length equal to m - n. 
(2) I f  (E,K) is the minimal canonical contraction of  (Z ,H)  and s =Card (E)  then 

m -  s is the dimension of  the graph Iso(Z,H). 
(3) The arcs in the dual graph of  l so(Z ,H)  are joining points in consecutive levels 

of  lso(Z,H).  
Graphs (X,G) at the level Np in the dual graph of  l so(Z ,H)  are exactly those 

graphs with Card (X) = m - p. 

Example 7.3. The following example shows us a forest (Z,H)  and all its contractions: 
two with 8 points (A and B), another two with 7 (C, D) and one with 6 points (E). 
D is a minimal element in Iso(Z,H)  and E is the minimal canonical contraction. 

(Z,H) A B C O E 

The last picture shows the reduced graph lso (Z,H)  and its dual. 

(Z,H) E = (E, K) 

C A 

E = (E,K) (Z,H) 

B 
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